
1

awn

under Contract DE-AC52-07NA27344.
Silo/HDF5 Modifications for D
Mark C. Miller

Presented at the Dawn User Forum, April 15, 2010

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory

LLNL-PRES-428015

2

erials/variables

cts/types

ffsets
Silo Background

Benefits (= flexibility)
• platform independent, self-describing, archiveable data
• random access (more true of post-processors than simulation codes)

Drawbacks (= performance degradation)
• metadata (data a lib writes on behalf of its caller)
• caller is far removed from actual disk I/O behavior/control

Application

Silo Library

HDF5 PDB

sec2

stdio

core . . .

sec2

stdio

meshes/mat

arrays/stru

files/bytes/o. . .

other

VFL

3

ematic

posed on write
plex

ultiple files

e”
Poor Man’s Parallel I/O
Truly concurrent, parallel I/O to a single file is probl

• Difficult to make perform well even for relatively simple I/O patterns.
• The global monolithic “whole” object is decomposed on read, re-com
• Does not support multi-physics codes where I/O patterns are more com

Poor Man’s Parallel I/O: Parallelism at the price of m
• Serial I/O to multiple files, simultaneously
• #files != #MPI-tasks
• Very flexible with what each MPI-task needs to do in the way of I/O
• Do not pay cost of “decomposing on read” and “recomposing on writ
• Note: Lustre can’t tell the difference (almost)

4

st size

isk Speed
I/O Performance

Histogram of a recent Ares dump
 writes bytes %writes cum.%writes %bytes

<10^1 bytes: 48 217 20.1680 20.1680 .0001
<10^2 bytes: 41 1485 17.2268 37.3949 .0009
<10^3 bytes: 116 22474 48.7394 86.1344 .0136
<10^4 bytes: 8 30540 3.3613 89.4957 .0186
<10^5 bytes: 0 0 0 89.4957 0
<10^6 bytes: 3 1092492 1.2605 90.7563 .6655
<10^7 bytes: 22 162989412 9.2436 100.0000 99.3010

reque

tr
an

sf
er

 r
at

e

domain size

Silo

HDF5/PDB

sec2/stdio

Theoretical D

5

Aggregation is key
to improving performance

Aggregation
• Gather many smaller requests into fewer larger ones
• Need memory to do this.
• Try aggregating as much as possible WITHIN one MPI-task first.
• Failing that, start aggregating ACROSS MPI-tasks.

6

ies

mory.
lable memory.

D.

 by app.
Simple Aggregation Strateg
HDF5’s Core VFD:

• Stores everything to a growing buffer in memory.
• Writes buffer to file on close.
• Reads ENTIRE file to memory buffer on open.
• Represents upper-bound of what is possible at expense of (a lot) of me
• Only works if when code does I/O, it is dumping less than 50% of avai
• Not a good long term solution

HDF5’s Split VFD:
• Splits data into two classes; raw and meta, writing each to its own VF
• Metadata uses core VFD, raw data uses sec2 VFD
• Improves performance but at price of two files on disk per one created

7

wn

e-empt.

le
Silo’s new Block VFD for Da
Breaks virtual file into blocks

Does I/O only in blocks
• Allocates enough memory to keep N blocks in memory; uses LRU to pr

Two Parameters set by code
• SILO_BLOCK_SIZE (should be multiple of filesystem blocksize)
• SILO_BLOCK_COUNT (more is better)

Good Values for Dawn
• SILO_BLOCK_SIZE = (1<<20)
• SILO_BLOCK_COUNT=16 (16 Megabytes total)

fi

mem

8

e

core VFD
PI-tasks
-send(s).

le
Other VFDs We May Writ
Remote-Core VFD

• Use extra MPI-tasks just for I/O
• Code “writes” to memory in these extra MPI-tasks through enhanced
• Code goes back to compute while data drains to files from the extra M
• Should be absolute fastest as code doesn’t ever wait for disk; just MPI

Smart-Split VFD:
• Only one file is produced
• Raw data is block buffered as in new Silo VFD
• Metadata is kept in memory until file close, then tacked onto end of file

Extend Block VFD to stripe across MPI-tasks

• Let application “think” its writing to different files
• What if each MPI-task is writing wildly different amounts of data?
• May be possible to make this completely transparent to HDF5

fi

memtask 0 task 1

	Silo/HDF5 Modifications for Dawn
	Silo Background
	Benefits (= flexibility)
	. platform independent, self-describing, archiveable data
	. random access (more true of post-processors than simulation codes)

	Drawbacks (= performance degradation)
	. metadata (data a lib writes on behalf of its caller)
	. caller is far removed from actual disk I/O behavior/control

	Poor Man’s Parallel I/O
	Truly concurrent, parallel I/O to a single file is problematic
	. Difficult to make perform well even for relatively simple I/O patterns.
	. The global monolithic “whole” object is decomposed on read, re-composed on write
	. Does not support multi-physics codes where I/O patterns are more complex

	Poor Man’s Parallel I/O: Parallelism at the price of multiple files
	. Serial I/O to multiple files, simultaneously
	. #files != #MPI-tasks
	. Very flexible with what each MPI-task needs to do in the way of I/O
	. Do not pay cost of “decomposing on read” and “recomposing on write”
	. Note: Lustre can’t tell the difference (almost)

	I/O Performance
	Histogram of a recent Ares dump
	writes bytes %writes cum.%writes %bytes
	<10^1 bytes: 48 217 20.1680 20.1680 .0001
	<10^2 bytes: 41 1485 17.2268 37.3949 .0009
	<10^3 bytes: 116 22474 48.7394 86.1344 .0136
	<10^4 bytes: 8 30540 3.3613 89.4957 .0186
	<10^5 bytes: 0 0 0 89.4957 0
	<10^6 bytes: 3 1092492 1.2605 90.7563 .6655
	<10^7 bytes: 22 162989412 9.2436 100.0000 99.3010

	Aggregation is key to improving performance
	Aggregation
	. Gather many smaller requests into fewer larger ones
	. Need memory to do this.
	. Try aggregating as much as possible WITHIN one MPI-task first.
	. Failing that, start aggregating ACROSS MPI-tasks.

	Simple Aggregation Strategies
	HDF5’s Core VFD:
	. Stores everything to a growing buffer in memory.
	. Writes buffer to file on close.
	. Reads ENTIRE file to memory buffer on open.
	. Represents upper-bound of what is possible at expense of (a lot) of memory.
	. Only works if when code does I/O, it is dumping less than 50% of available memory.
	. Not a good long term solution

	HDF5’s Split VFD:
	. Splits data into two classes; raw and meta, writing each to its own VFD.
	. Metadata uses core VFD, raw data uses sec2 VFD
	. Improves performance but at price of two files on disk per one created by app.

	Silo’s new Block VFD for Dawn
	Breaks virtual file into blocks
	Does I/O only in blocks
	. Allocates enough memory to keep N blocks in memory; uses LRU to pre-empt.

	Two Parameters set by code
	. SILO_BLOCK_SIZE (should be multiple of filesystem blocksize)
	. SILO_BLOCK_COUNT (more is better)

	Good Values for Dawn
	. SILO_BLOCK_SIZE = (1<<20)
	. SILO_BLOCK_COUNT=16 (16 Megabytes total)

	Other VFDs We May Write
	Remote-Core VFD
	. Use extra MPI-tasks just for I/O
	. Code “writes” to memory in these extra MPI-tasks through enhanced core VFD
	. Code goes back to compute while data drains to files from the extra MPI-tasks
	. Should be absolute fastest as code doesn’t ever wait for disk; just MPI-send(s).

	Smart-Split VFD:
	. Only one file is produced
	. Raw data is block buffered as in new Silo VFD
	. Metadata is kept in memory until file close, then tacked onto end of file

	Extend Block VFD to stripe across MPI-tasks
	. Let application “think” its writing to different files
	. What if each MPI-task is writing wildly different amounts of data?
	. May be possible to make this completely transparent to HDF5

